
Lawrence Berkeley National
Laboratory

(University of California, University of California)

Year Paper LBNL↩

Dense and Sparse Matrix Operations on

the Cell Processor

Samuel W. Williams John Shalf Leonid Oliker

Parry Husbands Katherine Yelick

This paper is posted at the eScholarship Repository, University of California.

http://repositories.cdlib.org/lbnl/LBNL-58253

Copyright c©2005 by the authors.

Dense and Sparse Matrix Operations on

the Cell Processor

Abstract

The slowing pace of commodity microprocessor performance improvements
combined with ever-increasing chip power demands has become of utmost con-
cern to computational scientists. Therefore, the high performance computing
community is examining alternative architectures that address the limitations
of modern superscalar designs. In this work, we examine STI’s forthcoming Cell
processor: a novel, low-power architecture that combines a PowerPC core with
eight independent SIMD processing units coupled with a software-controlled
memory to offer high FLOP/s/Watt. Since neither Cell hardware nor cycle-
accurate simulators are currently publicly available, we develop an analytic
framework to predict Cell performance on dense and sparse matrix operations,
using a variety of algorithmic approaches. Results demonstrate Cell’s potential
to deliver more than an order of magnitude better GFLOP/s per watt perfor-
mance, when compared with the Intel Itanium2 and Cray X1 processors.

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government.
While this document is believed to contain correct information, neither the United States
Government nor any agency thereof, nor The Regents of the University of California, nor any of
their employees, makes any warranty, express or implied, or assumes any legal responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by its trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof, or The
Regents of the University of California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or any agency thereof or
The Regents of the University of California.

Dense and Sparse Matrix Operations on the Cell Processor

Samuel Williams, John Shalf, Leonid Oliker, Parry Husbands, Katherine Yelick
Lawrence Berkeley National Laboratory

1 Cyclotron Road
Berkeley CA, 94720

{SWWilliams, JShalf, LOliker, PJRHusbands, KAYelick}@lbl.gov

Abstract
The slowing pace of commodity microprocessor

performance improvements combined with ever-
increasing chip power demands has become of utmost
concern to computational scientists. Therefore, the high
performance computing community is examining
alternative architectures that address the limitations of
modern superscalar designs. In this work, we examine
STI’s forthcoming Cell processor: a novel, low-power
architecture that combines a PowerPC core with
eight independent SIMD processing units coupled with a
software-controlled memory to offer high FLOP/s/Watt.
Since neither Cell hardware nor cycle-accurate simulators
are currently publicly available, we develop an analytic
framework to predict Cell performance on dense and
sparse matrix operations, using a variety of algorithmic
approaches. Results demonstrate Cell’s potential to
deliver more than an order of magnitude better GFLOP/s
per watt performance, when compared with the Intel
Itanium2 and Cray X1 processors.

Keywords
STI, Cell, GEMM, SpMV, sparse matrix, three level
memory

Introduction
 Over the last five years, a plethora of alternatives
have been suggested for cache-based architectures
including scratchpad memories, paged on-chip memories,
and three level memory architectures. Such software
controlled memories can potentially improve memory
subsystem performance by supporting finely-controlled
prefetching and more efficient cache-utilization policies
that take advantage of application-level information.
Intelligent prefetching and scheduling policies can
significantly improve the utilization of off-chip bandwidth
– addressing the increasing requirements for these limited
resources as multi-core chip technology becomes more
prevalent.
 Scratchpad memories [15, 16, 17] segment the
addressable memory space into a cacheable off-chip
space, and an on-chip space. The on-chip space is
typically no larger than a few kilobytes. For many
applications, this can provide significant (50%)

improvement in performance by avoiding cache misses.
However, the typical benchmark is a small embedded
suite and often can easily fit within the scratchpad.
 An alternate approach is paged on-chip memory
[13]. The contents of the larger off-chip memory are
paged in and out of the on-chip memory much like how
virtual memory pages are swapped in and out of physical
memory to disk. Thus control is the responsibility of the
OS rather than the hardware or the program. A cache can
be placed between the on-chip memory and the processor
for improved performance. For some large scientific
applications, performance can improve by 50%. For
others, like TPCC, performance can be severely inhibited.
The highly efficient VIRAM [14] coupled paged on-chip
memory with high performance vector processing to
achieve very high performance.
 Three level memories [11, 12] create a third
(registers, on-chip, off-chip) address space for on-chip
memory. Placement of data into this address space is
controlled by the program. In addition to avoiding cache
misses, it is possible to avoid TLB misses as well. Often
it is advantageous to utilize this memory as a buffer. In
addition to higher performance, this approach is far more
scalable.

Until recently, few of these architectural
concepts made it into mainstream processor designs, but
the increasingly stringent power/performance
requirements for embedded systems have resulted in a
number of recent implementations that have adopted these
concepts. Chips like the Sony Emotion Engine [8, 9, 10]
and Intel’s MXP5800 both saw high performance at low
power by adopting the three level memory architecture.
More recently, the STI Cell processor has adopted a
similar approach.

This paper studies the applicability of the STI
Cell processor to the most common of scientific kernels –
dense matrix multiplication and sparse matrix vector
multiplication. Cell is a high-performance mainstream
implementation of software-controlled memory in
conjunction with considerable floating point resources
that are required for demanding numerical algorithms.
The current implementation of Cell offers higher
performance single-precision arithmetic, which is widely
considered insufficient for the majority of scientific

applications. However, we adopted Cell as a testbed
architecture with the understanding that future variants for
scientific computing will eventually include a fully
pipelined double precision floating point unit and support
for large virtual pages. This paper explores the
complexity of mapping scientific algorithms to this chip
architecture and uses simulation methods and analytic
models to predict the potential performance of dense and
sparse matrix arithmetic algorithms on Cell.

We start with an overview of the Cell processor
architecture. This is followed by a discussion of viable
programming models. In the next section, the
performance prediction methodology and simulation
methods are introduced. Finally, we describe various
methods for mapping dense and sparse matrix arithmetic
to the Cell processor and predict their performance. The
paper concludes with a glimpse into future explorations.

1. Cell Background
 Cell [1, 2] was designed by a partnership of
Sony, Toshiba, and IBM (STI) to be the heart of Sony’s
forthcoming PlayStation 3 gaming system. Cell takes a
radical departure from conventional multiprocessor or
multi-core architectures. Instead of using identical
cooperating processors, it uses a conventional high
performance PowerPC core that controls eight simple
SIMD cores, or SPE’s. An overview of Cell is provided
in Figure 1.

Figure 1
Cell Processor - Eight SPE’s, one PowerPC core, one memory
controller, and two I/O controllers are connected via four rings. Each
ring is 128b wide and runs at half the core frequency. Each SPE has its
own local memory from which it runs programs.

Unlike a typical coprocessor, each SPE has its
own local memory from which it fetches code and reads
and writes data. The PowerPC core, in addition to virtual
to physical address translation, is responsible for the
management of the contents of each SPE’s 256KB of
non-cache coherent local store. Thus to load and run a
program on an SPE, the PowerPC core initiates the
DMA’s of SPE program and data from DRAM to the
local store. Once the DMA’s complete, the PowerPC core
starts the SPE. For predictable data access patterns the
local store approach is highly advantageous as it can be
very efficiently utilized through explicit software-
controlled scheduling. Improved bandwidth utilization

through deep pipelining of memory requests, requires less
power, and has a faster access time than a large cache due
in part to its lower complexity. If however, the data
access pattern lacks predictability, then the advantages of
software managed memory are lost.

Access to external memory is handled via a
25.6GB/s XDR memory controller. The PowerPC core,
the eight SPE’s, the DRAM controller, and I/O controllers
are all connected via 4 data rings, collectively known as
the EIB. The ring interface within each unit allows 8
bytes/cycle to be read or written. Simultaneous transfers
on the same ring are possible. All transfers are
orchestrated by the PowerPC core.

Each SPE includes four single precision 6-cycle
pipelined FMA datapaths and one double precision half-
pumped 9-cycle pipelined FMA datapath [20]. As more
information becomes publicly available, these may need
to be refined as sources are terse. Thus for
computationally intense algorithms like GEMM, we
expect single precision implementations to run near peak
whereas double precision would drop to approximately
one tenth the peak single-precision flop rate according to
IBM’s design specifications [21]. Similarly, for
bandwidth intensive applications – SpMV, we expect
single precision to be between 50% and four times as fast
depending on density and uniformity.

2. Programming Models
 Although the presence of eight independent
processing elements offers huge benefits for peak
performance, it presents a very challenging programming
model. In this section, we explore some of the options
available for mapping scientific algorithms onto this
complex new architectural model.

The data-parallel programming model is very
common in the sciences and offers the simplest and most
direct method of decomposing the problem. The
programming model is very similar to loop-level
parallelization afforded by OpenMP or the vector-like
multistreaming on the Cray X1 and the Hitachi SR-8000.
Although this decomposition offers the simplest
programming model, the restrictions on program structure
and the fine-grained synchronization mean that it may not
be the fastest or the most efficient approach.

If we adopt a more loosely coupled model, the
same methods that are applied to partitioning problems
for distributed memory machines can be applied to this
processor as if it were a ”cluster on chip.” The DMA
engines on the SPE’s can be used to mimic a message-
passing interface to coordinate action on the SPE’s.
However, for some categories of algorithms, this model
can become significantly more complicated than a data-
parallel approach.

A pipelined execution model was also
envisioned by the Cell designers as a way to support
streaming algorithms such as video codecs by partitioning
stages of the process among the SPEs. However, we do
not consider this programming model in this paper
because early analysis indicated it did not present

SPE
256KB

PPC
512KB

memory
controller

I/O

I/O

EIB
4 rings, 8bytes/ core cycle

25.6 GB/s

SPE
256KB

SPE
256KB

SPE
256KB

SPE
256KB

SPE
256KB

SPE
256KB

SPE
256KB

significant benefits in easer of programming or
performance over the other programming models.
 In each model, it is the responsibility of the
PowerPC core to manage the flow of data in, out, and
between the SPE’s. This management is very
computationally light. Thus the PowerPC core, and most
likely its L2 cache will be available for system functions
without undermining computational performance or
consuming much power.
 Each SPE is capable of simultaneously servicing
DMA’s and executing code. Thus instead of loading data,
computing on it, then returning the results before moving
on to the next block – something analogous to bulk
synchronous, the SPE’s should load data for the next
operation, store data for the previous operation, and
compute the current operation simultaneously. This of
course necessitates double buffering inputs and outputs,
and will incur a startup and finish overhead penalty like
any pipelining approach. Nevertheless, in a data parallel
approach, it should allow high utilization of either
memory bandwidth or computational assets.

3. Simulation Methodology

In this paper, performance estimation is broken
into two steps commensurate with the two phase double
buffered computational model. This provides a high level
understanding of the performance limitations of the Cell
processor on various algorithms. Once we gain access to
a cycle accurate simulator, we will verify our results and
gain understanding of the processor features that limit
performance.

In the first step, pencil and paper estimations
were performed for operations such as gather, SAXPY,
dot product, and register blocked matrix multiply. The
resulting relations were quantified into models that took
into account the SIMD nature of the SPE’s – i.e. 4
FLOPs/cycle vs. 1 FLOP/cycle at four times the
frequency.

In the second step, we construct a model that
accounts for the time required to load, via DMA, various
objects, such as vectors, matrix cache blocks, or a stream
of nonzeros, into the local store of an SPE. The model
must accurately reflect the constraints imposed by
resource conflicts. For instance, a sequence of DMA’s
issued to multiple SPE’s must be serialized, as there is
only a single DRAM controller. The model also
presumes a fixed DMA initiation latency of 1000 cycles
based on existing design documents available regarding
the Cell implementation. The model also presumes a
broadcast mechanism that is similar to classic token ring
network implementations where tokens are dispatched
from the memory controller, travel along the ring as their
data is copied by each SPE they pass, and are
automatically removed once they have looped back to the
memory controller.

The width of the SIMD units, the number of
SPE’s, and the local store size and bandwidth are encoded
directly into the model as constants. External control is
provided for parameters such as: the time for a SIMD

reduction, the steady state time (per element) for a gather,
a dot product or a SAXPY, the time to perform an inter
SPE vector reduction, and the DMA initiation latency.

Our simulation framework is essentially a
memory trace simulator – the difference being the
complexity of the concurrent memory and computation
operations that it must simulate. Instead of explicitly
simulating computation using a cycle-accurate model of
the functional units, we simulate the flow of data through
the machine, and annotate the flow with execution time.
The execution unit bandwidths and pipeline latencies are
modeled as part of the data flow simulation. Therefore,
our simulation is more sophisticated than a typical
memory-trace simulator; however, it does not actually
perform the computation. Additionally, instead of storing
the matrix in a particular storage format and writing a
program for each format, we store the key parameters for
the matrix, and the nonzeros of the sparse matrix in an
internal format, and write a performance annotator for
each simulated storage format. This facilitated our work
and allowed for detailed understanding of various
characteristics of the sparse matrices.

Each algorithm was broken into a number of
phases in which communication for the current objects
and computation for the previous objects can take place
simultaneously. Of course, for each phase, it was
necessary to convert cycles into actual time and FLOP
rates. For simplicity we chose to model a 3.2GHz, 8 SPE
version of Cell with 25.6GB/s of memory bandwidth
which is likely to be used in the first release of the Sony
PlayStation 3 [19]. This ensured that both the EIB and
DRAM controller could deliver two single precision
words per cycle. The maximum flop rate of such a
machine would be 204.8GFLOP/s, with a computational
intensity of 32 FLOPs/word. It is unlikely that any
version of Cell would have less memory bandwidth or run
at a lower frequency.

For comparison, we use Cray’s X1 MSP and
Intel’s Itanium2. The key characteristics of the
processors are detailed in Table 1.

 CELL X1(MSP) Itanium2
 SPE Chip

Architecture SIMD multi-core multi-chip
Vector

VLIW

Frequency 3.2GHz 3.2GHz 800MHz 900MHz
DRAM BW - 25.6GB/s 34GB/s 6.4GB/s

GFLOP/s (single) 25.6 204.8 25.6 3.6
GFLOP/s (double) 2.6 20.5 12.8 3.6

Local Store 256KB 2MB - -
L2 Cache - 512KB 2MB 256KB
L3 Cache - - - 1.5MB

Power 3W [1] ~30W 100W 130W

Table 1

Summary of architectural features of IBM’s Cell [21], the Cray X1
MSP, and Intel’s Itanium2 including single and double precision peak
performance. A local store is not part of a cache hierarchy. Total Cell
power is based on the active SPE’s/idle PowerPC programming model.

4. Dense Matrix Matrix Multiplication
The first benchmark run, SGEMM, is a single

precision dense matrix matrix multiply. With its
extremely high computational intensity, one should
expect Cell to achieve a high percentage of peak flop rate.

Two storage formats were explored. The default
is a column major format for all three matrices. The
second format, block data layout, or BDL, organizes
matrix sub-blocks into contiguous blocks of memory [7].
This can be particularly advantageous as it not only
minimizes the number of DMA’s required, but also
minimizes the number of pages touched when loading a
sub-block. Although a matrix might not be stored in
BDL, it can quickly be converted on the fly. Figure 2
shows a matrix stored in the two formats.

4.1 Algorithm Considerations
Each matrix was broken into square “cache”

blocks. Technically they aren’t cache blocks as the SPE’s
have no caches, but for clarity we will continue to use the
terminology. A column layout will require a number of
short (cache block dimension) DMA’s equal to the
dimension of the cache block – e.g. 64 DMA’s of length
64. BDL will require a single DMA of length 16KB. The
assumed 1000 cycles of DMA latency can result in poor
memory bandwidth usage for small cache blocks.

The local store, being only 256KB, can’t store
more than about 56K words of data because the program
and stack must also fit in the local store. Cache blocks, if
double buffered, require 6*n2 words of local store (one
cache block from each matrix). Thus it is impossible,
with the current version of Cell, to utilize square cache
blocks larger than 96x96. Additionally, in column layout,
there is additional pressure on the maximum cache block
size for large matrices as each column within a cache
block will be on a different page. Upward pressure is
derived from the computational intensity of matrix
multiplication and the FLOPs to word ratio of the
processor. In the middle, there is a cache block size
which delivers peak performance.

The loop order in the column major storage
format was chosen to minimize the average number of
pages touched per phase. In BDL, as TLB misses are not
nearly the problem, the loop order was chosen to
minimize memory bandwidth.

A data parallel approach was chosen to
disseminate work between the SPE’s. Thus SPE cache

blocks of size n x n are aggregated into Cell cache blocks
of size 8n x n.

An alternate approach considered, although not
presented here would be to adapt Cannon’s algorithm [6]
for parallel machines to a parallel machine on-chip.
Although this could reduce the DRAM bandwidth
requirements by transferring blocks via the EIB, for a
column major layout, it could significantly increase the
number of pages touched. Simulation based analysis will
have to wait until a detailed model of the PowerPC TLB
is available.

For small matrix sizes, it is most likely
advantageous to choose a model that minimizes the
number of DMA’s. For example, broadcast both
matrices, in their entirety, to all SPE’s.

4.2 SGEMM Results

Figure 3 shows SGEMM performance for
various matrix dimensions, cache block sizes, and storage
formats. Clearly shown is that 32x32 cache blocks are far
too small to achieve a computational intensity high
enough to fully utilize the processor. The choice of loop
order and the resulting increase in memory traffic
prevents column major 64x64 blocks from achieving 90%
of peak. One doesn’t expect matrix multiplication to be
memory bound, but for small cache blocks, it can be.
Only 96x96 blocks provide enough computational
intensity to overcome the additional block loads and
stores.

0

25.6

51.2

76.8

102.4

128

153.6

179.2

204.8

N=256,
32x32

N=2048,
32x32

N=512,
64x64

N=2048,
64x64

N=768,
96x96

N=2304,
96x96

Matrix Dimension, Cacheblock Size

G
F

L
O

P
/s

Column Major BDL

Figure 3
SGEMM on Cell. Even with the minimum overhead of BDL, the lack of
computational intensity prevents 32x32 cache blocks from attaining 60%
of peak. The inefficiency of column major layout prevents it from
reaching peak performance without very large cache blocks.

It should be noted that if the DMA latency were
100 cycles, then the 64x64 column major performance
would reach parity with BDL. This is certainly a
motivation for user controlled DMA. Alternatively, if
128x64 blocks were used, then performance would also
rival BDL.

Higher frequencies (e.g. 4GHz) will not help if
peak performance is not being achieved due to high
memory traffic, DMA latency, or TLB misses. Similarly,

1

N

N+1 1

n

n+1

Figure 2
Left: column major layout. Right: BDL. Within each n x n block,
values are stored in column major order

higher bandwidth will go unused if the configuration is
computationally bound.

Larger local stores, and thus larger cache blocks
are not necessarily helpful in the column major layout as
that would necessitate more pages being touched, and the
likelihood of far more TLB misses. This is not an
obstacle in the BDL approach.

4.3 DGEMM Results

A similar set of strategies and simulations were
performed for DGEMM. Cache blocks are now limited to
be no larger than 64x64 – finite local store. This is not
the performance limitation it was in SGEMM. Although
the time to load a double precision 64x64 cache block is
twice that of a single precision version, the time required
to compute on a 64x64 double precision cache block is
about ten times (no more fully pipelined SIMD) as long as
the single precision counterpart. Thus it is far easier for
double precision to reach its peak performance. Of course
peak double precision performance is one tenth of single
precision – a mere 20 GFLOP/s.

4.4 Comparison

At 3.2GHz, each SPE requires about 3W [1].
Thus with a nearly idle PPC and L2, Cell achieves over
200GFLOP/s for around 30W – nearly 7GFLOP/s/W.
Clearly Cell is highly efficient at large matrix
multiplication

DGEMM and SGEMM were also run on Cray’s
X1, and a 900MHz Itanium2. The results are detailed in
the Table 2.

 Double (GFLOP/s) Single (GFLOP/s)
 Cell X1 Itanium2 Cell X1 Itanium2

Peak 20.4 11.2 3.5 204.7 16.4 3.6

Table 2

Peak GEMM performance (in GFLOP/s) for large square matrices on
Cell, X1, and the Itanium2. With about ¼ the power, Cell is nearly 6
times faster in double precision and more than 50 times faster in single
precision than the Itanium2.

The 900MHz Itanium2 is capable of running the
Intel MKL DGEMM at 3.5GFLOP/s. Although this
number is an impressively high percentage of peak, the
architecture is not power efficient, and scaling to
multiprocessors exacerbates the problem. For example a
4 processor 1.5GHz Itanium2 system will consume well
over 500W, and yet only deliver about 22GFLOP/s.
Contrast this with a single Cell processor which consumes
less than 1/15th the power and provides about the same
performance in double precision – by no means Cell’s
forte. The Itanium2 does not have SIMD support. Thus,
in single precision, Cell is more than 100 times more
power efficient. Similarly, in double precision, Cell is
about twice as fast as the X1, and at least 6 times more
power efficient. In single precision, Cell is nearly 40
times more power efficient.

The primary focus for matrix multiplication on
Cell is the choice of data storage to minimize the number
of DMA’s and TLB misses while maximizing
computational intensity. Secondary is the choice of
programming model. The decoupling of main memory
data access from the computational kernel guarantees
constant memory access latency since there will be no
cache misses, and all TLB accesses are resolved in the
communication phase.

Matrix multiplication is perhaps the best
benchmark to demonstrate Cell’s computational
capabilities as it achieves high performance by buffering
large cache blocks on chip before computing on them

5. Sparse Matrix Vector Multiply
 Naïvely, SpMV would seem to be the worst
application to run on Cell since the SPE’s have neither
caches nor gather/scatter support. Furthermore, SpMV
has O(1) computational intensity. However, these are
perhaps less important than the low functional units and
local store latency (<2ns), the task parallelism afforded by
the SPE’s, the eight independent load store units, and
ability to stream nonzeros via DMA’s.
 Three storage formats were examined:
compressed sparse row (CSR), compressed sparse column
(CSC), and blocked compressed sparse row (BCSR).
CSR collects the nonzeros from one row at a time and
appends three arrays: the values, the corresponding
columns for the values, and the locations in the first two
arrays where the row starts. BCSR behaves in much the
same way as CSR. The difference is that CSR operates
on what are in effect 1x1 blocks, and BCSR operates on
r x c blocks. Thus the values array is grouped into r*c
segments which include zeros. CSC is organized around
columns rather than rows.

Figure 4
A 4x4 matrix with columns numbered from 0 to 3 is shown stored in 1x1
BCSR (CSR), and 2x2 BCSR. CSC would look similar to CSR except
that it is organized along columns rather than rows.

All three storage formats provide regular access
patterns to the nonzeros. However, CSR and CSC force a
very irregular access pattern to the source and destination
vectors respectively. For SIMD sized granularities BCSR
provides regular access within a block, but requires
irregular accesses outside. BCSR also has the pitfall that
zeros are both loaded and computed on. Only the 2x2
BCSR data will be shown as the 4x4 blocks showed poor

1 2 3
4 5

6
7

CSR
Values = {1,2,3,4,5,6,7}
Columns = {0,2,3,1,3,2,3}
RowStart = {0,3,5,6,7}

BCSR (2x2)
Values = {1,0,0,4, 2,3,0,5, 6,0,0,7}
Columns = {0, 2, 2 }
RowStart = {0,8,12}

0 1 2 3

performance. Figure 4 provides an example matrix and
the corresponding data structures used in CSR and BCSR.
 A CSR/BCSR pseudocode overview can be
illustrative. In CSR, Y[r], values[i], and X[columns[i]]
are all scalars. In BCSR, Y[r], and X[columns[i]] now
are segments of the vectors, and the values[i] are blocks.
The X[columns[i]] statement is referred to as a gather
operation. CSR performs a dot product for each row.

 for all rows r
 for all elements i in row r
 Y[r] = Y[r] + values[i]*X[columns[i]]

For completeness, the following is pseudo code for CSC.

 for all columns c
 for all elements i in column c
 Y[rows[i]] = Y[rows[i]] + values[i]*X[c]

CSC performs a SAXPY for each column. The write to Y
is a scatter operation. Thus there is a dependency from
the gather to the scatter, and there is a potential
dependency from the scatter for one column to the gather
on the next.

5.1 Algorithm Considerations
 As there are no gather/scatter DMA operations in
Cell, cache blocking must be utilized. Once again, to be
clear, the term cache blocking, when applied to Cell,
implies that blocks of data, in this case the vectors, will be
loaded in the SPE’s local stores. For simplicity all
benchmarks were run using square cache blocks. The
data structure required to store the entire matrix is a 2D
array of cache blocks. Each cache block stores its
nonzeros and row pointers as if it were an entire matrix.
This results in more row pointers being loaded and
substantial overhead. Cache blocks were not double
buffered as this would require more local store, or more
precisely smaller cache blocks. This is an area for future
exploration. Collectively the cache blocks were chosen
to be no larger than ~36K words (half that in double
precision).
 It should be noted that since the local store is not
a write back cache, it is possible to overwrite its contents
without fear of either consuming DRAM bandwidth or
corrupting the actual arrays. The objects in the local store
are more appropriately copies of the objects in DRAM.
In CSR it is possible to decouple the gather operations
from the dot products because there is only a read after
read hazard from the gather operation on one row to the
gather on the next row. The contents of the index array,
or more appropriately, the copy of the index array, can be
overwritten with their corresponding source vector values.
This decoupled gather operation can be fully unrolled and
software pipelined, thereby being performed in close to
1.5 cycles/element. If the gather remained coupled to the
dot product, then without unrolling, the local store latency
would be exposed and performance may suffer.

The gather/scatter operations in CSC cannot be
decoupled from the SAXPY’s since there is a potential
read after write dependency from the scatter of one
column to the gather in the next column. This decoupled
approach provides CSR with a significant advantage over
CSC. As a result, we expect that CSC will never
outperform CSR; at best it will provide the same
performance (memory bound). Thus CSC results will not
be presented in this paper.
 It should be noted that it is possible to unroll the
longer dot products or SAXPY’s. This will provide
higher performance only if SpMV is not memory bound.
Beyond SIMD, this optimization was not explored in this
paper.
 As the nonzeros are stored in arrays, it is easy to
stream them in via DMA. Here it is essential to double
buffer to ensure that the SPE’s always have work to do.
Buffering 16KB was sufficient. Thus for CSR, this is 2K
values and 2K indices. For BCSR, this is at about 1K
tiles. For each phase, a load of nonzeros and indices,
there is the omnipresent 1000 cycle DMA latency.
 The biggest question was how to partition work
between SPE’s. By allowing all SPE’s work on the same
cache block, it is possible to broadcast the cache blocked
source vector and row pointers to minimize memory
traffic. One approach to divide work within a cache block
would be to more or less evenly divide the nonzeros
between the SPE’s. Of course this not only necessitates
each SPE have a private copy of the destination vector,
but that an inter-SPE reduction be performed at the end of
the blocked row. We call this approach PrivateY. The
alternate method, which we call PartitionedY, partitions
the destination vector evenly among the SPE’s. By
reducing the size of the destination vector within each
SPE, one can double the size of the source vector
“cached” within the local store. However there is no
longer any guarantee that the SPE’s computations will
remain balanced. The most loaded SPE determines the
execution time for the entire cache block. Thus for
balanced cache blocks, the PartitionedY usually wins out.
However for unbalanced cache blocks, not an uncommon
occurrence, the PrivateY approach wins.

The algorithm proceeds through the matrix one
blocked row at a time. The height of the blocked row is
equal to the cache block height. Thus it is possible to
save the write to the destination vector, and a possible
reduction until the end of the blocked row. The blocked
row is divided into cache blocks of equal height and
width. For each cache block the source vector and row
pointers are loaded. Once that is completed, blocks of
nonzeros are streamed to the SPE’s and partitioned
according to the partitioning strategy. Each block is
processed once it has been received, and at the same time
as the next block is being sent. Thus for each cache
block‘s execution, there is a startup penalty (to transfer
the first block of nonzeros) where no processing takes
place, and a finish penalty (to operate on the last block of
nonzeros), where no data transfer is taking place. Usually
these overheads, as well as the source vector load time,

destination vector reduction and destination store time,
are small compared to the total time.

It should be noted that there could be some
benefit by writing a kernel optimized for a symmetric
matrix. The nonzero memory traffic does not increase,
but the number of operations can double. One must,
however, cache block two blocks at the same time. Thus
the symmetric kernel divides memory allocated for cache
blocking the vectors evenly among the two sub-matrices,
and for each row in the lower triangle, performs a dot
product and a SAXPY.

5.2 Evaluation Matrices
 In order to evaluate SpMV performance, six
synthetic matrices, four unsymmetric matrices from the
SPARSITY matrix suite [3, 5], and six symmetric
matrices, also from the SPARSITY suite were run. Their
characteristics are summarized in the Table 3.

 Name N NNZ Comments
- 7pt_32 32K 227K 3D 7pt stencil on a 323 grid
- Random 32K 512K Totally random matrix

-
Random

(symmetric)
32K 256K

Random Symmetric matrix –
Total of 512K nonzeros

- 7pt_64 256K 1.8M 3D 7pt stencil on a 643 grid
- Random 256K 4M Totally random matrix

-
Random

(symmetric)
256K 2M

Random Symmetric matrix –
Total of 4M nonzeros

15 Vavasis 40K 1.6M 2D PDE Problem
17 FEM 22K 1M Fluid Mechanics Problem
18 Memory 17K 125K Memory Circuit from Motorola

36 CFD 75K 325K
Navier-Stokes, viscous flow, fully
coupled

06 FEM Crystal 14K 490K
FEM Crystal free vibration stiffness
matrix

09 3D Pressure 45K 1.6M 3D pressure Tube
25 Portfolio 74K 335K Financial Portfolio - 512 Scenarios
27 NASA 36K 180K PWT NASA Matrix with diagonal
28 Vibroacoustic 12K 177K Flexible box, structure only
40 Linear Prog. 31K 1M AAT

Table 3 – Benchmark matrices used for SpMV

Number refers to the matrix number in the SPARSITY suite used by the
Bebop group for benchmarking

5.3 Single Precision SpMV Results

The results of single precision performance
estimation are detailed in Figures 5 and 6. Surprisingly,
given Cell’s SpMV limitations, every matrix achieves
impressive multi-GFLOP performance for nearly every
configuration. Unfortunately, many of the matrices are so
small that they fully utilize only a fraction of a cache
block.

It was clear that the performance is almost
entirely determined by the memory bandwidth. It is not
possible, for many matrices, to achieve the 6.4GFLOP/s
CSR unsymmetric peak performance since there can be
substantial cache blocking and DMA overhead. As one
might expect, large matrices with high densities (to
amortize the cache blocking overhead) show closer to

peak performance. Similarly, larger cache blocks yield
higher performance for large matrices.

Unlike the synthetic matrices, the library
matrices, which contain dense sub-blocks, can exploit
BCSR without wasting memory bandwidth on zeros. As
memory traffic is key, storing BCSR blocks in a
compressed format (the zeros are neither stored nor
loaded) could allow significantly higher performance if
there is sufficient support within the ISA to either
decompress these blocks on the fly, or compute on
compressed blocks. Since detailed knowledge of the
permute datapath is currently unavailable, this exploration
will have to wait.

0.00

1.60

3.20

4.80

6.40

8.00

7pt Stencil
(N=32K)

random
(N=32K)

random
symetric
(N=32K)

7pt Stencil
(N=256K)

random
(N=256K)

random
symetric

(N=256K)

G
F

L
O

P
/s

0.00

0.80

1.60

2.40

3.20

4.00

4.80

5.60

6.40

Vavasis FEM Memory CFD Average

G
F

LO
P

/s

CSR, PrivateY, 16K BCSR, PrivateY, 16K
CSR, PartitionedY, 16K BCSR, PartitionedY, 16K

CSR, PartitionedY, 32K BCSR, PartitionedY, 32K

Figure 5
Top: Single precision SpMV using synthetic matrices – clear benefits
from density and uniformity. Bottom: using SPARSITY unsymmetric
matrices – PrivateY shows superior performance due to unbalance.

0.00

1.60

3.20

4.80

6.40

8.00

9.60

11.20

12.80

FEM
Crystal

Pressure
(3D)

Portfolio NASA Vibro-
acoustic

LP Average

G
F

LO
P

/s

CSR, PrivateY, 8K/8K BCSR, PrivateY, 8K/8K
CSR, PartitionedY, 8K/8K BCSR, PartitionedY, 8K/8K
CSR, PartitionedY, 16K/16K BCSR, PartitionedY, 16K/16K

Figure 6

Single precision SpMV using SPARSITY symmetric matrices –
Significant performance boost from minimization of nonzero traffic.
Each of the cache blocks is half as big. Imbalance in PartitionedY
strategy can generate serious performance degradation.

 The choice of a partitioning strategy is pretty
clear. PrivateY is almost invariably the better approach.
Most likely, the matrices are sufficiently unbalanced that
the uniform partitioning of the nonzeros coupled with a
reduction requires less time.

Since the local store size is fixed, cache blocks in
the symmetric kernels are in effect half the size of the
space allocated. The symmetric kernel, when in the
PartitionedY configuration, is extremely unbalanced for
cache blocks along the diagonal. Thus, for small
matrices, imbalance between SPE’s, even if the matrix is
uniform, can severely impair the performance. Figure 7,
which assumes a Cell configuration with 4 SPE’s, might
help visualize the inherent flaw in the symmetric kernel as
implemented. In fact, symmetric optimizations show only
about 50% performance improvement (determined by
running the symmetric matrices on the unsymmetric
kernel).

The TLB plays a much smaller role in this

algorithm than in GEMM. Accesses are unit stride, and
there is rarely more than 16 DMA’s per phase. Each of
these DMA’s is of order a page size.

Once again DMA latency plays a relatively small
role in this algorithm. In fact, reducing the DMA latency
by a factor of ten results in only a 10% increase in
performance. This is actually a good result. It means
than the memory bandwidth is highly utilized. The
majority of bus cycles are used for transferring data rather
than stalls.
 On the whole, clock frequency also plays a small
part in the overall performance. Increasing the clock
frequency by a factor of 2 (to 6.4GHz) provides less than
a 5% increase in performance on the SPARSITY
unsymmetric matrix suite. Similarly, cutting the
frequency in half (to 1.6GHz) results in less than a 10%
decrease in performance. One might wonder if the dot
product times are too aggressive. Cutting the frequency
in half could just as easily be interpreted as a doubling in
dot product time – even if we were off by a factor of two,
its only a 10% difference in overall performance. Simply
put, for the common case, more time is used in
transferring nonzeros and the vectors rather than
computing on them. This means that solely doubling

bandwidth will not necessarily double performance. In
fact, in order to double performance, doubling bandwidth
must be coupled with an amortization of DMA latency.
Similarly, an increase in bandwidth efficiency – i.e. a
reduction in meta data, is only useful if it is accompanied
by an increase in parallelism.

5.4 Double Precision SpMV Results
 Preliminary analysis indicates that single
precision SpMV is nearly twice as fast as double
precision on the Cell architecture. Initially this can be
surprising since memory traffic should only increase by
50%. A single precision nonzero requires 8 bytes (a 32b
value and a 32b index). In double precision, a nonzero
requires 12 bytes – the index remains 32 bits. The biggest
problem is the reduction in the number of values that are
cache blocked. Twice as many cache blocks within a
blocked row must be loaded and twice as many blocked
rows are present. For example, consider 16K x 16K
single precision cache blocks on a 128K x 128K matrix.
The 512KB source vector must be loaded 8 times. In
double precision, the cache blocks are only 8K x 8K. As
a result, the 1MB source vector must be loaded 16 times.
Thus far more memory bandwidth can be consumed on
cache blocking.

5.5 Comparison

Results are compared with the SPARSITY suite,
a highly tuned sparse matrix numerical library [3]. The
previously documented optimum performance on a
900MHz Itanium2 processor, in addition to Cell’s
estimated performance behavior, is detailed in Tables 4
and 5.

 Double (GFLOP/s) Single (GFLOP/s)

Matrix Cell Itanium2 Cell Itanium2
Vavasis 3.12 0.51 5.95 0.52
FEM 3.40 0.54 5.09 0.63
CFD 2.02 0.25 2.48 0.15

Average 2.85 0.43 4.51 0.43

Table 4
Peak SpMV performance (in GFLOP/s) of Cell and Itanium2 for both
double and single precision on the SPARSITY unsymmetric matrix
suite. Even in double precision, Cell is about seven times faster (with
only four times the memory bandwidth).

 Double (GFLOP/s) Single (GFLOP/s)
Matrix Cell Itanium2 Cell Itanium2

FEM Crystal 6.23 0.74 11.98 1.21
3D Pressure 5.97 0.72 11.02 1.24

Protfolio 1.63 0.23 2.77 0.19
NASA 1.76 0.27 2.91 0.22

Vibroacoustic 3.28 0.31 6.78 0.41
Linear Prog. 4.81 0.33 8.52 0.66

Average 3.95 0.43 7.33 0.66

Table 5
Peak SpMV performance (in GFLOP/s) of Cell and Itanium2 for both
double and single precision on the SPARSITY symmetric matrix suite.
Cell is about 10 times faster (with only four times the memory
bandwidth).

Figure 7
Left: small matrix with single cache block. If the matrix is uniform,
and the PartitionedY strategy is used, then SPE3 performs 7 times as
much work as SPE0. Right: larger matrix. Overall, SPE3 now
performs a little over twice the work of SPE0. As on-diagonal cache
blocks become the minority (large matrices), their inherent imbalance
ceases to adversely affect performance.

1

3
2

0

1
2
3

0

1
2
3

0

1
2
3

0

With the Itanium2’s 6.4GB/s bus, one would

expect that a memory bound application like SpMV
would perform only four times better on Cell, whose
DRAM bandwidth is 25.6GB/s. Nevertheless, on
average, Cell is more than seven times faster. In single
precision, Cell is more than 10 times faster. Actually this
is not that surprising. In order to achieve peak
performance, Itanium2 must rely on BCSR and thus waste
memory bandwidth loading zeros. For example, in matrix
#17, Cell uses more than 50% of its bandwidth loading
just the double precision nonzero values, while the
Itanium2 utilizes only 33% of its bandwidth. The rest of
Itanium’s bandwidth is used for zeros and meta data.
Cell’s cache blocking is far more efficient in single
precision since cache blocks double in size in both
dimensions. It should be noted that where simulations on
Cell involve a cold start to the local store, the Itanium2’s
have the additional advantage of a warm cache.

Cell’s use of on-chip memory as a buffer is
advantageous in both power and area than a cache. In
fact, Cell is more than 20 times more power efficient than
the Itanium2 on SpMV.

Comparing results with the X1, even with the
permutation optimization (CSRP), an X1 MSP achieves
only about 1 GFLOP/s on a 7pt stencil [4]. Standard CSR
achieves less than 0.01 GFLOP/s. On a similar matrix, in
double precision, Cell is able to achieve about
1.77GFLOP/s. Although the X1 has 50% more memory
bandwidth, it is only a little better than half the
performance of Cell.

Although it is true that cell achieves a dismally
low percentage of peak flop rate (less than 5%), it is using
a high percentage of memory bandwidth. For completion,
a search of the entire BCSR space is required to find the
true optimum performance levels.

6. Conclusions

The high performance computing community is
exploring alternative architectural approaches to address
the limitations of modern superscalar designs. This work
presents the first attempt to explore the behavior of
scientific kernels on the forthcoming Cell processor’s
novel architecture. Since neither Cell hardware nor cycle-
accurate simulators are currently publicly available at this
time, we develop an analytic framework to predict Cell
performance on dense and sparse matrix operations, using
a variety of algorithmic approaches. Results, compared
with the Intel Itanium2 and Cray X1 processors, indicate
the tremendous potential of the Cell architecture, both in
terms of raw performance and power advantages.
 Analysis shows that Cell’s three level memory
architecture, which completely decouples main memory
load/store from computation, provides several advantages
over mainstream cache-based architectures. First, kernel
performance can be extremely predictable as the average
load time from local store is also the worst case. Second,
long block transfers can achieve a much higher
percentage of memory bandwidth than individual loads in

much the same way a prefetch engine, once engaged, can
fully consume memory bandwidth. Finally, for
predictable memory access patterns, communication and
computation can be effectively overlapped. Increasing
the size of the local store or reducing the DMA startup
overhead on future Cell implementations may further
enhance the scheduling efficiency in order to better
overlap the communication and computation.
 There are disadvantages to this architecture.
Although GEMM is highly predictable, and inherently has
a high computational intensity, SpMV, with its
unpredictable access patterns and low computational
intensity achieves a dismally low percentage of peak
performance. Even memory bandwidth can be wasted
since SpMV is constrained to use cache blocking to
remove the unpredictable accesses to the source vector.
The ability, however, to perform a decoupled gather, to
stream nonzeros, and Cell’s low functional unit latency,
tends to hide this deficiency.
 For dense matrix operations, it is essential to
maximize computational intensity and thereby fully
utilize the local store. However, if not done properly, this
can result in TLB misses adversely affecting performance.
BDL data storage, either created on the fly or before hand,
can ensure that TLB misses remain a small issue as on-
chip memories increase in size.

7. Future Work
 A key component missing in this work is cycle-
accurate simulation of the Cell architecture. We expect to
work on validating the models that we have been using to
predict Cell performance using a suite of high level
architectural simulators that are due to be released by
IBM Research in late July. We will report those results in
this paper if the software release proceeds as scheduled.
The simulation results will also be checked against runs
on Cell-based workstations when they become available.
 We are also actively expanding our study of the
Cell architecture’s applicability to science to include
stencil-based computations, FFT’s for spectral methods,
and even pipelined mapping of large arithmetically
intense loops.
 Cell will not reach its true potential for scientific
computing until an implementation that includes at least
one (preferably two) fully pipelined double precision
floating point unit becomes available. Until then, studies
of Cell may provide insights into enhancements that may
prove useful for mainstream desktop processor
implementations or even a variant of the Cell processor
that includes other HPC-oriented features.

References
[1] B. Flachs et al., A Streaming Processor Unit for a Cell Processor,

ISSCC Dig. Tech. Papers, Paper 7.4, 134-135, February, 2005.
[2] D. Pham et al., The Design and Implementation of a First-

Generation Cell Processor, ISSCC Dig. Tech. Papers, Paper 10.2,
184-185, February, 2005.

[3] R. W. Vuduc. Automatic performance tuning of sparse matrix
kernels. PhD thesis, University of California, Berkeley, 2003.

[4] E. F. D'Azevedo, M. R. Fahey, R. T. Mills. Vectorized Sparse
Matrix Multiply for Compressed Row Storage Format. ICCS, 99-
106, 2005

[5] E.-J. Im, K. Yelick, and R. Vuduc. Sparsity: Optimization
framework for sparse matrix kernels. International Journal of High
Performance Computing Applications, 2004.

[6] L. Cannon. A Cellular Computer to Implement the Kalman Filter
Algorithm. PhD thesis, Montana State University, 1969.

[7] N. Park, B. Hong, and V. K. Prasanna. Analysis of Memory
Hierarchy Performance of Block Data Layout, International
Conference on Parallel Processing (ICPP), August 2002.

[8] M. Oka, et al. Designing and programming the emotion engine.
Micro, IEEE, Volume: 19, Issue: 6, Nov.-Dec. 1999

[9] A. Kunimatsu, et al. Vector Unit Architecture for Emotion
Synthesis. Micro, IEEE, Volume: 20, Issue: 2, March-April 2000.

[10] M. Suzuoki, et al. A Microprocessor with a 128-Bit CPU, Ten
Floating-Point MAC’s, Four Floating-Point Dividers, and an
MPEG-2 Decoder. Solid-State Circuits, IEEE Journal, Volume:
34, Issue: 11, November 1999.

[11] B. Khailany, et al. Imagine: Media Processing with Streams.
Micro, IEEE, Volume: 21, Issue: 2, March-April 2001

[12] M. Kondo, et al. SCIMA: A Novel Processor Architecture for High
Performance Computing. High Performance Computing in the
Asia-Pacific Region, 2000. Proceedings. The Fourth International
Conference/Exhibition on, Volume: 1, 14-17 May 2000.

[13] P. Keltcher, et al. An Equal Area Comparison of Embedded
DRAM and SRAM Memory Architectures for a Chip
Multiprocessor. HP Laboratories Palo Alto. April 2000.

[14] The Berkeley Intelligent RAM (IRAM) Project, Univ. of
California, Berkeley, at http://iram.cs.berkeley.edu.

[15] S. Tomar, et al. Use of Local Memory for Efficient Java
Execution. Computer Design, 2001. ICCD. Proceedings. 23-26
September 2001.

[16] M. Kandemir, et al. Dynamic Management of Scratch-Pad
Memory Space. Design Automation Conference. Proceedings, 18-
22 June 2001.

[17] P. Francesco, et al. An Integrated Hardware/Software Approach
For Run-Time Scratchpad Management. 41st Design Automation
Conference. Proceedings, June 7-11, 2004.

[18] ORNL Cray X1 Evaluation.
http://www.csm.ornl.gov/~dunigan/cray.

[19] Sony press release
http://www.scei.co.jp/corporate/release/pdf/050517e.pdf

[20] S. Mueller, et al. The Vector Floating-Point Unit in a Synergistic
Processor Element of a CELL Processor.. 17th IEEE annual
Symposium on Computer Arithmetic. June 27-29, 2005. (to appear)

[21] IBM Cell Specifications
 http://www.research.ibm.com/cell/home.html

